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We use a least squares metric to match the return pattern of a target stock with that of an out-
of-sample-twin. The twin with the smallest metric is found by a comprehensive period-by-period
search of stocks in the Center for Research in Security Prices data set extending back to 1926. If
technical analysis has value, targets of twins producing the highest returns in the twin postperiod
should also have the highest performance in the target postperiod. Using a randomly selected
sample of 66,000 return patterns, we find higher means for targets corresponding to the highest
returning twin quintile. We also use regressions to risk adjust target returns and find that twin
returns in the postmatch period significantly predict risk-adjusted target returns.

The historical price graph may be the most recognizable of all forms of information considered
by the ordinary investor. However, financial academics, relying on the logic of the efficient
markets theorem and exhaustive empirical investigations, largely contend that the information
contained in past stock prices is of little value to the investor. Conversely, technical analysts
embrace the idea that past patterns are informative. Malkiel (1981) states “. . . technical analysis
is anathema to the academic world. We love to pick on it. Our bullying tactics are prompted by
two considerations: (1) the method is patently false and (2) it easy to pick on. And while it may
seem a bit unfair to pick on such a sorry target, just remember it is your money we are trying
to save.” Technical analysts counter that academic studies can never capture every nuance of the
stock chart. In addition, if technical analysis is of no value, it is puzzling why it is still prevalent
in the marketplace. Why would a rational economic agent engage in such activity and why would
firms pay for this form of human capital? Lo, Mamaysky, and Wang (2000) characterize the
difference between technical analysis and quantitative finance as follows: “Technical analysis
is primarily visual, whereas quantitative finance is primarily algebraic and numerical.” And
“technical analysis has survived through the years, perhaps because its visual model of analysis
is more conducive to human cognitions. ...” Menkhoff (2010) finds that the vast majority of
692 fund managers in five market (the United States, Germany, Switzerland, Italy, and Thailand)
trading countries rely heavily on technical analysis. He concludes that “At a forecasting horizon
of weeks, technical analysis is the most important form of analysis and up to this horizon it is
thus more important than fundamental analysis.”
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A significant problem in technical analysis is the precise mathematical definition and prespec-
ification of the patterns or rules. Neftci (1991) addresses the problem of the precise mathematical
definition of technical rules and notes that any well defined rule must pass the test of being
defined in Markov time. In short, at time ¢, the rule must give buy and sell signals without
using information from times 7 >¢. Further, he notes that according to the Wiener-Kolmogorov
prediction theory, vector autoregressions (VARs) should yield the optimal linear forecast. Hence,
any forecast that improves on VARs must be based on nonlinear methods.

Another problem confronting technical analysis is that of data snooping. Data snooping occurs
when the same data set is used repeatedly to investigate different models of pricing or selection
rules. Since there are no equilibrium models of technical analysis, efforts to find profitable
trading rules are necessarily ad hoc. Thus, the significance levels are suspect and almost certainly
overstated. Sullivan, Timmermann, and White (1999) use White’s (2000) reality check bootstrap
methodology to develop data snooping adjustments in the context of technical analysis.

Our approach satisfies the Neftci (1991) criterion and largely avoids the issue of data snooping
since we do not prespecify patterns or selection rules. Using a database of daily and monthly stock
returns from the Center for Research in Securities Prices (CRSP) stocks, we randomly choose
target stocks and, via exhaustive search, compare their (normalized) price pattern with the price
pattern of stocks at an earlier period. The stock and interval with the best matching pattern is
referred to as the “twin.” The selected twin can be a previous pattern of the target stock, but it is
more likely to be a pattern from some other stock in the universe.

There are four relevant intervals in the target-twin paradigm: 1) the match period of the target, 2)
the match period of the twin, 3) the postmatch period of the twin, and 4) the postmatch period of
the target. All match and postperiods of the twin precede in time and do not intersect the match and
postperiods of the target. The out-of-sample performance of the target (target postmatch period)
is inferred from the out-of-sample, but from the known performance of the twin (twin postmatch
period). If the twin pattern is informative, twins that perform well in the twin postperiod will
significantly explain the performance of the target in the postmatch period. We use regressions
and the target/twin paradigm to test the hypothesis that price patterns are informative.

The paper is organized as follows. We review the literature in Section 1. Section II develops
the model, while Section III documents the data and screens. Section IV outlines the regression
models and Section V provides our conclusions.

. Background

An early form of technical analysis was formulated by Charles Dow (1851-1902), founder of
Dow Jones & Company and the Wall Street Journal. The Dow theory, popularized in Wall Street
Journal editorials, is developed in Robert Rhea’s book (1932) and in Murphy (1986). Following
Dow, Alfred Cowles (1933) demonstrated that the Dow Theory, as interpreted, would earn less
than a well diversified buy and hold portfolio. In more recent years, the use of technical trading
rules and pattern identification techniques have been proposed and tested extensively by a number
of scholars including Alexander (1961), Brock, Lakonishok, and LeBaron (1992), and Lo et al.
(2000) to name just a few. Alexander’s (1961) filter rule was first shown to produce returns greater
than buy and hold, but Fama and Blume (1966), using the 30 stocks in the Dow Jones Industrial
Average and the filter rule, found that when transaction costs were taken into account, only two
of the 30 stocks in the Dow Jones Industrial Average (DJIA) would have bested buy and hold.
Sweeney (1988), using the filter rule and transaction costs available to floor traders, finds that 14
of the surviving stocks in the Dow beat buy and hold for the period 1970-1982. Brock et al. (1992)
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investigate a variety of moving average and channel break techniques. They find that a set of 26
trading rules applied to the DJIA outperform a benchmark portfolio. Sullivan et al. (1999) expand
Brock et al.’s (1992) set of 26 technical rules to 7,846 trading rules and find profitable trading
opportunities. However, in the 1987-1996 out-of-sample period, the best performing trading rules
are not significant. Marshall, Cahan, and Cahan (2010) explore technical trading rules on 49
stocks around the world found in the Morgan Stanley Capital Index. They find that when data
snooping is taken into account, over 5,000 trading rules do not add value beyond that expected
by chance.

Some anomalies have also been noted in connection with momentum strategies. However,
the short-term positive autocorrelation reported by Lo and MacKinlay (1988) is not enough to
overcome trading costs faced by investors. Findings of long-term negative autocorrelation have
also been reported. For example, DeBondt and Thaler (1987) note that portfolios of previous
winning stocks are beaten by a portfolio of losing stocks in out-of-sample tests.

Lo et al. (2000) use kernel regressions to extract and evaluate 10 well known patterns used in
technical analysis. They do not test trading profitability, stating that such tests necessarily involve
specifying a fully articulated dynamic general asset pricing model. Instead, they focus on whether
patterns can be informative. If patterns are informative, conditioning on them should alter the
distribution of returns. Indeed, using x* and the Kolmogorov-Smirnov test, they find that some
patterns are informative. Using stocks in the CRSP database that traded from 1962 to 1996, they
find that seven of 10 patterns are informative for NYSE/AMEX stocks and all 10 patterns are
informative for NASDAQ stocks. Jegadeesh (2000) points out, however, that conditional means
are not different and that the difference in the distributions are due to differences in higher
moments.

In several respects, our approach is like that of Lo et al. (2000). We examine patterns and
provide evidence that the distributions conditional on previous patterns is different from that
of unconditional returns. However, we use regressions with controls to demonstrate that the
conditional differences are due to differences in means. Our approach also differs from that of Lo
et al. (2000) in that we do not prespecify patterns, but search for twins with patterns that match
those of the target.

Regression control variables include loadings on Fama and French (1993) risk factors and
Carhart (1997) momentum, match period average excess returns as a proxy for overreaction
explored by DeBondt and Thaler (1987), the firm’s own momentum as in Jegadeesh and Titman
(1993), and the standard error of residuals similar to the idiosyncratic volatility measure used by
Ang et al. (2006, 2009). Thus, the control variables adjust for known proxies for risk, momentum,
and overreaction.

We find evidence that five year monthly patterns are informative, even after adjustment for
risk, momentum, and overreaction. We do not find that daily patterns evolving over 150 days are
informative when returns are adjusted by the controls. For the monthly patterns, out-of-sample
target returns are significantly related to the 12, 24, and 36 month returns of the twin. When
analyzed by quintiles, we also find evidence that targets corresponding to twins in the best
performing quintile postmatch are informative. While target regressions on posttwin returns are
significant, adjusted R”s are usually less than 4%.

II. The Model

Consider a stock x in the universe of stocks 2. Observations on x are in the interval I, =
[Zimingep Emax(xy] WheTe fingyy is the time of the first recorded trade and £,y is the time of the last
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recorded trade. The target stock is denoted by subscript a and the twin stock by subscript w. The
dividend adjusted price of the target stock at time ¢ is P,(7) and the price of the twin stock at time
s is Py,(s). The target match period is the interval [£,¢ + t] = T,. Similarly, the twin match period
is the interval [s, s + 7] = T.

To allow for out-of-sample evaluation, postmatch periods are defined for both the target and
the twin. The target postmatch period is of length A, and is defined by (¢ + 7, £ + 7 + A.]. Thus,
data set limitations require that  + 7 + A, < fiax()-

The twin postmatch period is of length A,,. To prevent the twin postmatch period from inter-
secting with the target match period, we require thats + 7 + A, < ¢.

To determine the best twin, we normalize the initial target and twin prices and minimize
a difference metric between the target and twin stock price over all feasible twin stocks and
intervals. The stock universe is the set Q stocks in the CRSP database after screening. For target
stock a and match period 7, the twin is the stock w € Q satisfying

T

min
weld,sely,
4

where I, = [tyinw), £ — T — A,). In some cases, the twin and target can be the same stock.
Typically, the stock a is not the same as the stock w. This reflects the logic that over a previous
and nonintersecting interval, the pattern of a stock is more likely to match the pattern of one of a
large number of stocks rather than its own pattern.

Since we use discrete data, we implement Equation (1) by summing the metric over all stocks
and displacements. Both @ = 1 and & = 2 metrics were evaluated and found to produce almost
identical results. Consequently, we focused on the usual squared metric. The algorithm begins
with the random selection of a target a at prespecified time ¢, with an interval of length 7, and a
candidate twin w with a match period beginning at s = #(,). The metric is evaluated and s is
increased by one period until all feasible periods are evaluated (until s = #-t-A,, -1). This means
that for a single stock w, we evaluate each possible interval prior to intersection with the match
period of the target. The twin w and the metric is saved and other twins are successively evaluated
for all w € 2,, and integers s € I,,. The twin and the match interval are the w and s minimizing
the discrete form of Equation (1).

To highlight the intuition underlying the target-twin methodology, selected examples are dis-
played in Figures 1 and 2. All prices are inclusive of dividends and normalized to one at the start
of the match period and the postmatch period. Figures 1 and 2 are matches using monthly prices
where the match period is 60 months and the postperiod is 24 months. The Nike match period
begins in January 2000. By exhaustive search, the stock and the interval with prices closest to that
of Nike is determined using a squared metric. Nike’s twin is 3M with a match period beginning
on January 31, 1979. The postperiod prices of 3M begin on the first trading day in February, 1984
and the postperiod prices for Nike begin on the first trading day in February, 2005. The Nike
and 3M prices remain closely coupled in their postperiods. Over the 24 month postperiod, Nike’s
holding period return is 12.2% and 3M’s holding period return is 18.7%.

Figure 2 is a plot of the prices for the target Greif, Inc. and its twin, Xerox. The Xerox twin
interval begins in July 1967. In this plot, the match period prices are closely coupled, but there is
an obvious divergence in their postperiods. Twin prices are generally decreasing in the postperiod,
while the target prices are generally increasing. After 24 months in their postmatch period, Greif’s
holding period return is 100%, while Xerox’s holding period return is —36%.

Pi(t+v) P,(s+v)|*
P,()  P,(s)

dv,a > 0, ¢}
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Figure 1. Nike and Twin Returns: Mont
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A. Hypothesis

If technical analysis has information not embedded in the prices, the postmatch returns of the
twin will contain information about the out-of-sample target returns. The out-of-sample period
of length A,, for the twin is the interval (s 4+ 7, s + © + A,;] = ®,. The out-of-sample period
for the target is the interval ( + , t + 7 + A,] = ®,. We define 7, to be the vector of the target
returns in ®, and r,, to be the vector of twin returns in ®,,. Instead of testing for the equality of
the distributions as in Lo et al. (2000), we impose a stricter standard and test the null hypothesis
that the conditional out-of-sample target returns are independent of the postperiod twin returns.

Our null is

Elrglry, 0] = Erq|0],
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where 6 is a vector of proxies for risk, momentum, and overreaction. We test the null hypothesis
using linear regressions with parameters estimated by the Generalized Method of Moments
(GMM).

lll. Data

We evaluate both daily and monthly returns using the CRSP database from 1926 to 2008.
The database was preprocessed to remove observations that could confound the matching or
postmatch evaluation process. We removed randomly chosen target-match interval pairs, (a,7;),
if the target fails to maintain a listing during the postmatch period. In addition, to avoid anomalies
caused by the discrete quantization of prices, we removed records where the target was valued
at less than $2 per share for any 12 consecutive holding periods. Similarly, we removed targets
with unknown returns, and targets with no trades or zero returns for at least 12 of the previous
24 holding periods. In each case, we did not remove the stock, but only the stock-interval pair,
(a,T,), that violates one or more of these screens.

A. Performance Quintiles

For daily data, performance quintiles are formed each year beginning January 2, 1968 and
ending January 2, 2008. One thousand targets are randomly chosen on the first trading day of
each year. Each target is matched with a twin, providing a total of 41,000 observations. The match
period is 150 days in length and the postmatch period, in some cases, extends up to an additional
75 days. Therefore, the data on the target extend up to 225 trading days into 2008.

For monthly data, performance quintiles are formed each year beginning January 31, 1955 and
ending January 31, 2001. Targets are chosen randomly in January of each year. Each target is
matched with a twin, providing a total of 25,000 observations. It was not possible to find 1,000
twins for each year back to 1955 due to data screens. Years 1989-2001 have 1,000 observations
(target-twin matches) per year or a total of 12,000 observations. Targets in years 1955-1988
sometimes have fewer than 1,000 observations and produce a total of 13,000 observations. The
minimum number of matches in any year was 200 (years 1955-1964). The match period for
monthly data is 60 months and the postmatch period extends up to an additional 36 months.
Therefore, the data on targets extend up to January 31, 2009.

Quintiles are formed each year for each set of targets. For example, if 1,000 targets are selected
for a match period beginning in 2001, quintiles of 200 stocks each are formed during this match
period. Similarly, moving back one year, quintiles of 200 stocks are formed for the stocks with
a match period beginning in the year 2000. This process continues until the quintiles are formed
for each year back until 1955 (monthly data) or 1968 (daily data). We refer to the stocks with a
matching period beginning in year 2001 as the year 2001 data set.

Quintile performance is measured by the holding period returns at a number of horizons. For
monthly returns, we sort twins in the postperiod based on holding period returns at 12, 18, and
24 months. For daily returns, we consider horizons of 25, 50, and 75 days in the postperiod. Target
membership is determined by the quintile of their twin. If the twin in the postperiod is in the n®
quintile, Q,, then the target is also placed in quintile Q,. The smallest returns are in Quintile One
and the larger returns are ordered monotonically by increasing return with the highest returns
in Quintile Five. If the twin is informative, the target postperiod returns will be significantly
different across quintiles. We form 25 sets of quintiles for monthly data and 41 sets of quintiles
for daily data. Each target stock in a set (e.g., the year 2001 set) is uniquely assigned to a quintile.
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We analyze both holding period returns and average adjusted returns. Holding period returns
for an m period horizon are computed as

rm)y=T](1+r)" -1, (3)
Je=1

where r;(m) = r; when the holding period is clear from the context. The returns include dividends.

We compute adjusted returns for target stocks in the postperiod in the year ¢ (e.g., year 2001)
data set. We subtract the average postmatch return of all targets in that data set from the raw return
of the target. The averaged adjusted return for stock j from the year ¢ data set is computed as

Yadi(iy =Tjt — T 4

where r;; is the postperiod return for target j in the year ¢ data set and 7; is the overall mean return
for all target stocks in the year ¢ data set. Equivalently, 7,4 is the postmatch return from a long
position in stock j and a short position in an equally weighted portfolio of targets. The portfolio
requires zero net investment.

One advantage of using adjusted returns is that it nulls the effect of survival bias. Survival
bias is otherwise present since we select only those targets that have CRSP returns through the
postmatch period.

Timely evaluation of the set of records for the best match is a computational challenge. There
are a total of over 900,000 records for the monthly data set and 17 million records in the daily
data set. Since we search over all time increments to find the best twin interval combination, a
single match can require the evaluation of nearly 1,000,000 twins for monthly data and almost
20,000,000 twins for daily data. In addition, we evaluate a total of 41,000 targets using daily
data and 25,000 targets using monthly data, increasing the total number of computations by a
multiple of roughly 61,000. Using efficient programming techniques, a single match over monthly
intervals can be made in a fraction of a second.

B. Plots and Descriptive Statistics

Adjusted return plots from 25,000 matches are illustrated in Figure 3 . The twins were matched
over 60 months and the returns were sorted at 12 months in the postperiod. The highest twin
returns are in Quintile Five. In the postperiod, the adjusted returns of the target in Quintile Five
dominate other quintiles at all horizons. The quintile returns were not monotonic. The second
best quintile was Quintile One.

Daily adjusted return plots derived from 41,000 matches are provided in Figure 4 . The match
period was 150 days and the twin returns were sorted at 75 days. Quintile Five target returns were
generally higher, but other quintiles were better at 5 and 25 days.

Quintile statistics for adjusted monthly returns are provided in Table I. All returns are computed
in their respective postmatch periods. Twin returns are sorted and target returns are computed for
holding periods of 12, 18, and 24 months. In Panel A, the twin sort and target holding period is
12 months. Quintile Five has the highest adjusted return at 0.0276 followed by Quintile One at
0.0080. All other quintiles have negative adjusted returns. Similarly, Quintile Five also has the
largest standard deviation followed by Quintile One. We compute medians of the adjusted returns
to see if the quintile results are driven by large outliers. We do not find that to be the case as
medians are algebraically larger for Quintile Five. Adjusted return medians are negative for all
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Figure 3. Adjusted Target Return by Quintiles: Monthly Data

Stock returns in all quintile are adjusted by average returns for the year.

Adjusted Return of Monthly Targets
1955-2008

10%
£0 Month Match: Twin Quintiies Created at 12 months {n =25,000)
& .
8% = Cuintl
6% D
\\\\\\\\\“\\\\\“\\\\\\Q‘ W Guint2
g 4% \“\‘\“\\\\ “‘\\\‘\\‘\\\\\\\\\\\\\\\\\\
2 oy e - e BN
B £ RS S
& e RSN
e s
& 0% e &\\‘\{\\\‘\‘{{Q\\\ e Quintd
2 \\\\\\\\\\\\\ e N\
0% B 3{{“\\\\ L 36
o NNy

< \\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\.\\:::\\\}\ s (uintd

4% "W

;\\\\
" \\\\
5% N—
-8%
Months Post Match

Figure 4. Adjusted Target Return by Quintiles: Daily Data

Stock returns in all quintiles are adjusted by average returns for the year.
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quintiles due to positive skewness. The results are similar for Panels B and C where the respective
mean adjusted returns and medians are higher for Quintile Five.

Table II reports adjusted holding period returns when quintile sorts are based on daily matches.
Quintile Five still has the highest returns when twins are sorted at 25, 50, or 75 days. Quintile Five
(second best) adjusted returns are 0.0021 (0.0010), 0.0018 (0.005), and 0.0037 (0.0017). Quintile
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Table I. Statistics for Target Adjusted Holding Period Returns by Quintile:
Monthly Data

Our sample consists of 25,000 observations for the period from January 31, 1955 to January 31, 2001. The
target and twin match period is 60 months. Quintiles are formed each year based on twin holding period
returns at 12 months in Panel A, 18 months at Panel B, and 24 months in Panel C. The quintiles are arrayed
from the lowest twin return, Quintile 1 to highest twin return, Quintile 5. Target quintile membership is
determined by the quintile of the twin. We adjust postperiod target returns by average returns (Adj HPR) in
the year ¢ dataset. Sample averages, standard deviations, medians, and skewness are computed from adjusted
target returns.

Adj. HPR Quintile
Postmatch 1 2 3 4 5
Panel A. Twin Sort at 12 Months
12 Average 0.0080 —0.0204 —0.0109 —0.0043 0.0276
Std dev 0.4313 0.3502 0.3925 0.4080 0.4979
Medians —0.0499 —0.0591 —0.0589 —0.0536 —0.0416
Skew 2.5556 3.0216 4.7742 6.2473 5.0098
Panel B. Twin Sort at 18 Months
18 Average 0.0082 —0.0127 —0.0315 —0.0079 0.0439
Std dev 0.6098 0.5444 0.5625 0.5359 0.8140
Medians —0.1026 —0.0973 —0.1044 —0.0912 —0.0802
Skew 3.9678 4.5597 6.8906 4.1862 11.4997
Panel C. Twin Sort at 24 Months
24 Average 0.0228 —0.0273 —0.0231 —0.0210 0.0486
Std dev 0.9640 0.7853 0.7862 0.6909 0.9342
Medians —0.1299 —0.1296 —0.1355 —0.1346 —0.1008
Skew 12.2913 13.0209 10.6193 42210 7.8454

Five does not have the highest medians suggesting that these daily results may be driven by large
outliers. In addition, the returns in Quintile Five have the second highest estimated return standard
deviation of all three panels implying that perhaps the twins with the highest volatility matches
the target with the highest volatility. Thus, the higher return of the target is a compensation for
risk and is not related to the information provided by the twin.

Returns are not controlled for risk, momentum, or overreaction. We examine these adjustments
in the next section.

IV. Regression Models

The information presented in the tables and plots seems to indicate that twin returns are
informative. These results are consistent with the logic that higher twin returns predict higher
target returns in the postperiod. However, the focus thus far has been on point estimates that are
not adjusted for risk or other documented factors. These issues are examined in more detail in
this section.

Excess target returns in the postperiod are adjusted using seven factors available during the
target match period. From Dr. Kenneth French’s website, we obtain the Fama French (1993) and
Carhart (1997) factors: 1) mkt, 2) hml, 3) smb, and mom, 4) corresponding to excess market
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Table Il. Statistics for Average Adjusted Holding Preturns by Quintile: Daily Data

Our sample consists of 41,000 observations from January 2, 1968 to January 2, 2008. The target and twin
match period is 150 days. Quintiles are formed each year based on twin holding period returns at 25 days
in Panel A, 50 days in Panel B, and 75 day in Panel C. The quintiles are arrayed from lowest twin return,
Quintile 1, to highest twin return, Quintile 5. Target quintile membership is determined by the quintile of
the twin. We adjust postperiod target returns by average returns (Adj HPR) in the year ¢ data set. Sample
averages, standard deviations, medians, and skewness are computed from adjusted target returns.

Adj. HPR Quintile
Postmatch 1 2 3 4 5
Panel A. Twin Sort at 25 Days
25 Average 0.0002 —0.0006 —0.0028 0.0010 0.0021
Std dev 0.1202 0.1000 0.0908 0.1009 0.1159
Medians —0.0096 —0.0082 —0.0094 —0.00572 —0.0074
Skew 1.4370 1.8987 1.1202 1.3350 1.0335
Panel B. Twin Sort at 50 Days
50 Average —0.0004 0.0005 —0.0012 —0.0006 0.0018
Std dev 0.1719 0.1493 0.1324 0.1403 0.1691
Medians —0.0122 —0.0111 —0.0096 —0.0086 —0.0107
Skew 1.3217 1.9377 0.9717 1.1335 1.2050
Panel C. Twin Sort at 75 Days
75 Average 0.0017 —0.0040 —0.0031 0.0017 0.0037
Std dev 0.2216 0.1802 0.1702 0.1802 0.2159
Medians —0.0200 —0.0188 —0.0120 —0.0109 —0.0158
Skew 1.6580 1.9408 1.4427 1.7338 2.0434

return, 5) high minus low portfolio return, 6) small minus big portfolio return, and 7) a high minus
low momentum portfolio. Target returns during the match period are regressed on these factors
to provide firm loadings. We also use the idiosyncratic volatility estimated from the residuals.
Idiosyncratic volatility has been found to be important when explaining cross-sectional volatility
in Ang et al. (2006, 2009). We compute own stock momentum during the match period following
the approach of Jegadeesh and Titman (1993). For monthly data, own momentum is computed
as the last six months return during a five year match period. For daily data, own momentum is
computed as the last 75 days of a 150 day match period. Finally, we also included, as a control
variable, average excess return (alpha) obtained from Fama-French-Carhart (FF4) regressions
during the match period. Inclusion of alpha is consistent with the overreaction hypothesis of
DeBondt and Thaler (1987).

A. Quintile Regressions

We use GMM to fit postmatch target excess returns to a seven factor model plus target quintile
dummies. The model is

4 )
r,-—rf=59+25,@ﬂj;¢+55aj+55vj+570’j+ Z )/idj,j+£j,i7é3, (5)
k==t §=1,i#3

where j = 1...,25,000 for monthly data and j = 1, . .. 41, 000 for daily data. Further:
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r4 = the target holding period return in the target postperiod.
ry = the risk-free holding period return corresponding the horizon of the target return.
8¢ = the intercept constant.
Bjx = the FF4 loadings during the target match period for firm j and factor £.
a; = the o (average excess return) determined using the FF4 model in the match period for target
J.
€; = the stock’s own momentum equal to the holding period yield during the target’s last six
months (150 days) in the target match period.
o; = the idiosyncratic volatility estimated from the FF4 model fit during the target’s match
period.
d;; = the intercept dummy. The intercept dummy is d;; = 1 if the target return is in quintile j and
zero otherwise.

The hypothesis that the pattern is not informative is rejected if there is sufficient evidence to
conclude that the coefficient of d;; is significantly different from zero.

1. Monthly Data

Regression results for raw returns based on monthly data are provided in Tables III-V.
Table I1I reports quintile regressions when twin holding period returns are sorted at 12 months in
the postperiod. Dummies are assigned depending upon quintile membership. The Quintile Five
target return dummy (corresponding to the highest twin return) is significant and positive for
target holding periods of 3, 6, and 18 months. Respective significance levels are 0.0109, 0.0850,
and 0.0249. The adjusted R?s are 0.0252, 0.0298, and 0.385, respectively. The controls that are
significant at all these horizons are smb, mom, alpha, and stderr with p-values less than 0.0001.
The mom and alpha coefficients are negative, while the smb and stderr coefficients are positive.

Regression results when twin holding period returns are sorted at 18 and 24 months are
provided in Tables IV and V, respectively. The results are similar to those in Table III, with twin
dummies significant and positive at 3, 6, 12, and 18 months in both tables. The same control
variables, smb, mom, alpha and stderr, are consistently significant. They have the same signs as in
Table II1.

If meaningful patterns exist, one might expect that the significance of that information would
tend to attenuate at the beginning of the target’s postmatch period. That seems to be the case
as the significance levels of the ds coefficient are highest at the shortest postmatch horizon.
Specifically, the significance levels at the three month horizon are 0.0109, 0.0006, and 0.009 for
dummies corresponding to twin sorts at 12, 18, and 24 months, respectively. Likewise, postmatch
returns at 24 months are not significant for any twin sorts.

We also sorted twin postmatch returns into deciles and regressed target returns on decile
dummies. The regression setup was otherwise identical to the quintile setup. The results were
consistent with results using quintiles, both in levels of significance and R?s. Tables with decile
regressions are available from the authors.

2. Daily Data

Tables VI-VIII report results for daily data when twin returns are sorted at 25, 50, and 75 days
postmatch. In each table, excess target returns are computed at 5, 10, 25, 50, and 75 days. A
priori, one might expect that daily patterns would be more informative than monthly patterns
because the data are more timely. However, the daily data may be more greatly influenced by
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noise components that may make it difficult to extract useful information. Our regressions seem
to suggest that the latter explanation is more plausible.

We find nothing remarkable in Tables VI-VIIL. Quintile dummies are significant in only one
case. Specifically, the coefficient on ds is significant (p = 0.0211) for five day target returns in
Table VII. However, the coefficient is negative suggesting that the tendency of posttarget returns
is to move in an opposite direction from that of the twin. The maximum R? found in any of the
daily tables is 0.0058.

These results are interesting in light of the statistics presented in Table II. Specifically, point
estimates of mean returns in Table II indicated that the highest returns are in Quintile Five.
However, quintile returns are not significantly different when adjustments are made for risk and
other controls. This seems to suggest that incrementally higher returns from daily charts may be
primarily due to risk-bearing and/or behavioral factors.

B. Stock Return Regressions

In this section, we investigate individual stock returns as explained by market factors and
twin returns. The setup is similar to the quintile regressions, but actual twin returns are used as
regressors instead of dummies. The regression equation is

4
raj —rf = 30 + Z(Zkﬁjk + 350[1' +35‘Uj + 870’]' + y,»rwﬁ + 8j, (6)
k=1

wherej =1..., 25,000 for monthly dataand j = 1, . .. 41,000 for daily data. The twin’s return in
the posttwin perlod is 7y, where i = 1 corresponds to 12 month twin returns in the postmatch
period, i =2 corresponds to 24 month twin returns in the postmatch period, and i = 3 corresponds
to 36 month twin returns in the postmatch period. The null hypothesis is that y; =0, i = 1, 2,3.

1. Monthly Data

The results using monthly data are provided in Tables IX and X. Excess target holding period
returns are regressed against the control variables and twin holding period returns at all twin
horizons. In Table IX, Panel A, three month target returns in the target postperiod are regressed
against the control variables and twin returns at 12, 18, and 24 months. The twin return coefficients
are positive and significant. The respective significance levels are 0.0012, 0.0191, and 0.0016.
The control variables smb, mom, alpha, and stderr remain significant at 0.0001. In Panel B, excess
target returns at six months are regressed against the same factors and the significance levels of
the twins are 0.0008, 0.0036, and 0.0011, respectively. R*s generally remain between about 2.5%
to 3%. Target holding period returns at 12 and 18 months in the posttarget period are found in
Table X. The results are similar to those in Table IX: All twins are significant at better than the
1% level. Since we have adjusted for risk, momentum, and overreactions, we view these results
to be strong evidence that patterns are informative.

2. Daily Data

The results for regressions on twin returns using daily data are reported in Tables XI and XII. In
addition to the control variables, the regressors are twin returns at 25, 50, and 75 days. The results
here are similar to the regressions using quintile data. Namely, there is insufficient evidence to
conclude that twin returns are informative in the daily data. The only exception is in Table XI,
Panel B, where target returns at 10 days are regressed on controls and the 75 day twin return in
the postperiod. In that specification, the twin coefficient is positive and significant at 0.0939.
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V. Conclusions

‘We examine a large number of possible stock price patterns. Using the target-twin methodology
and data from an exhaustive search, we find that the patterns provide information beyond that
explained by other factors. The relationship between targets and twins is stronger when data and
patterns are evaluated using monthly data. A possible implication is that charts based on monthly
data are more informative than charts based on possibly noisy daily data.

Patterns based on daily data are interesting in another respect. Point estimates of mean returns
based on 41,000 observations indicate that the highest returns are in Quintile Five. However,
quintile returns are not significantly different when adjustments are made for risk and other
controls. This seems to suggest that incrementally higher returns from charting may be primarily
areward for risk bearing and/or behavioral factors.

Our regressions use proxies to adjust for the effect of risk, momentum, and over reaction.
The adjusted regressions provide consistent evidence that twin returns at 12, 18, and 24 months
postmatch are significant explanatory variables for postmatch target returns at 3, 6, 12, and 18
months. It is tempting to conclude that technical analysis can produce average excess returns.
However, we do not explicitly test a trading strategy and due to obvious research limitations, we
do not claim that statistically significant abnormal returns will result from an operational pattern
matching strategy. The regression R?s are small and the results are based on transaction data. We
do not account for bid-ask spreads or other forms of transaction costs. Furthermore, there is a
selection bias since prospective targets selected during the match period are required to have data
in the postmatch period.
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